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Perturbation theory can work for thermodynamic quantities! Let’s use it!

• HTLpt from Andersen, Su, Strickland. Dimensional Reduction/EQCD – the Finish Group
3

where we have assumed Nc = 3 (for larger Nc we would
have two independent quartic terms for the A0 field), and
where the last term �LE stands for a series of higher order
non-renormalizable operators that start to contribute to
the EoS only beyond O(g6). The theory is parametrized
by four constants: The three-dimensional gauge coupling
g3, the electric screening mass mE, the cubic coupling
⇣ ⇠ P

f µf (see [32] for details), as well as the quartic
coupling �E. All of these parameters have expansions
in powers of the four-dimensional gauge goupling g, and
their values have been determined to the accuracy re-
quired by the four-loop evaluation of the EoS, some even
beyond this (see e.g. [33]).

As discussed in [24], the above way of writing the
full theory pressure suggests a very natural resummation
scheme: While the unresummed weak coupling expan-
sion is obtained by expanding the (perturbatively deter-
mined) EQCD partition function in powers of the four-
dimensional gauge coupling g, one may alternatively sim-
ply skip this last step and keep pEQCD a function of the
e↵ective theory parameters, writing

T pEQCD = pM + pG, (9)

where the functions pM and pG can be read o↵ from
eqs. (3.9) and (3.12) of [4]. In [24], this procedure was
observed to lead to a considerable improvement of the
convergence and renormalization scale dependence of the
full theory pressure at zero chemical potential. It can,
however, be applied to the case of the finite density pres-
sure or the quark number susceptibilities with equal ease,
which is what we have implemented in our calculations.
An important step in this in principle straightforward ex-
ercise is to use the e↵ective theory parameters in a form,
where they have been analytically expanded in powers of
µ/T ; cf. appendix D of [4] and appendix B of [34]. We
refrain from writing the resulting, very long expressions
here, but simply display the result of the procedure in
the plots to follow.

Choice of parameters. Before proceeding to a quanti-
tative comparison of our predictions with lattice data, we
will briefly discuss our choices for the parameters appear-
ing in the results. These include the values of the renor-
malization scale ⇤̄ and the QCD scale ⇤MS, in addition
to which a prescription for determining the form of the
running gauge coupling must be specified. In both the
HTLpt and DR calculations, we follow standard choices
used in the literature, which we summarize below.

In perturbative calculations of bulk thermodynamic
observables, the renormalization scale ⇤̄ is typically given
a value of roughly 2⇡T and then varied by a factor of 2
in order to measure the sensitivity of the result with re-
spect to this choice. Optimally, the central value should
result from a presecription such as the Fastest Apparent
Convergence (FAC) or the Principle of Minimal Sensi-
tivity (PMS). For the HTLpt result, neither of these is
however available, and hence the central value is chosen
as 2⇡T . In the DR calculation, we on the other hand
follow a commonly used prescription introduced in [29]
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FIG. 1. A comparison of our HTLpt (wider, red band)
and DR (blue band) results for the second order baryon
number susceptibility �B/T 2 with the lattice results of the
HotQCD [1] (black dots, extending to T ⇡ 250 MeV) and
Wuppertal-Budapest [2] (WB, green dots) collaborations.
The bands corresponding to the perturbative results originate
from varying the values of ⇤̄ and ⇤MS within the ranges indi-
cated in the text. Asymptotically, all of the results approach
the limiting value of 1/3.

and apply FAC to the three-dimensional gauge coupling
g3, thus obtaining ⇤̄central ⇡ 1.445 ⇥ 2⇡T .

For the dependence of the gauge coupling constant on
the renormalization scale, we use a one-loop perturba-
tive expression in the HTLpt result and a two-loop one
in the DR case. This is in accordance with the usual
rule that the uncertainties originating from the running
of the gauge coupling should not exceed those due to the
perturbative computation itself. Finally, for the choice of
the QCD scale ⇤MS we use a recent lattice determination
of the value of the strong coupling constant at a refer-
ence scale of 1.5 GeV [35]. Requiring that our one- and
two-loop running couplings agree with this, we obtain
the values of 176 and 283 MeV in these two cases, re-
spectively. To be conservative, we vary the value of ⇤MS
around these numbers by 30 MeV, which is somewhat
larger than the reported lattice error bars.

Results. In Fig. 1, we display our results for the sec-
ond order baryon number susceptibility �B ⌘ @2p/@µ2

B ,
which to a very good accuracy satisfies the relation
�B = �uu/3 and for which most of the lattice data has
been derived. As the widths of the red and blue bands —
corresponding respectively to the HTLpt and DR results
— demonstrate, the dependence of our results on the
renormalization scale and the value of ⇤MS is rather mild.
For instance, a comparison of the DR band with the un-
resummed four-loop result of [3] shows a reduction of the
uncertainty by a factor of nearly 10 in this temperature
range. Our two results are in addition in reasonably good
agreement with each other, considering that the current
HTLpt result is only of one-loop order. A comparison
with the recent continuum extrapolated lattice data of
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Want to compute transport with similar precision at high T
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succetibility Resummation
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Basic picture of weakly coupled plasma

Hard particle modes, P ∼ T

Soft field modes, P ∼ mD

1. Strong coupling – no quarks and gluons at scale T

2. Weak coupling – quarks and gluons quasi-particles at scale gT

3. Intermediate coupling – no strict quark and gluon quasi-particles at scale gT

- This is what these perturbative schemes are doing



Motivation

• This calculation uses LO order photon production rates (Turbide, Rapp, Gale)Photon Production in Hot and Dense Strongly Interacting Matter 23
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Fig. 18. The spectrum of real photons measured in Au - Au collisions at RHIC. The top panel
data is extracted following the same technique (identifying low mass dileptons with a virtual
photon) as that used for the low momentum part of Figure 13, and is for a centrality class of
0 - 20%. The data set “PHENIX (1)” is from [65], while the data set “PHENIX (2)” is from
[67]. The latter supersedes the former. The bottom panel is for a centrality class of 0 - 10%;
the higher momentum data there corresponds to a direct measurement and is from Ref. [68].
The different contributions are discussed in the main text.

RγAA(b, pT ,y) =

∫ 2π
0 dφdNγ (b)/d2pT dy

2πTAB(b)dσ pp
prompt/d2pTdy

(33)

we only consider y = 0 in this work. Also, as advertised previously, the azimuthal anisotropy
coefficient might help disentangle some of the photon sources. Both these projections of the
data are examined. In what concerns RγAA, it is first useful to isolate some of the cold nuclear
matter effects; this is done in the left panel of Figure 19. In these estimates, a considerable
effect on the nuclear modification factor is caused by neglecting the jet-plasma photons. This
amounts to a reduction of approximately 30% (at intermediate values of pT ), as seen in the
right panel of Fig. 19. The two extreme cases - where jet-plasma photons are present or not -
bracket the experimental data; the current large error bars do not permit a choice. The apparent
downward trend of the data is intriguing. Isospin contributes to this as noticed in Ref. [70], and
seen in the left panel. Notably, in the calculations presented here, the additional suppression in
RγAA originates from the fact that jets fragmenting into photons have lost energy. This consti-

We want to compute
this rate at NLO

Thermal rate is
dominant for a 
certain momentum
range

Direct photons are measured, but this is not my real motivation . . .



My real motivations:

1. Energy loss.

2. The shear viscosity.



My real motivation. Energy loss at sub-asymptotic energies is important:

1. Kinematic constraints limit the agreement between energy loss formalisms

– Higher Twist versus AMY versus W-DGLV

– See the report of the Jet Collaboration: arXiv:1106.1106

2. Finite energy leads to large angle emission outside of radiative loss formalism

T

∆θ

E

T

(1 − x)E

xE

As the bremmed energy gets lower and lower, the angle ∆θ gets larger and larger,

limiting the agreement



A sample plot from DGLV in the Jet Collaboration Report:
14
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FIG. 9: Comparison of Eqs. (2) and (3) in the massless
limit and for which the x+ dependence of Eq. (2) has been
transformed into xE; see Eq. (13). Also shown is the result
when using the xE interpretation and reducing ✓max to ⇡/4,
a reasonable O(1) variation in the kT cut-o↵.

C. AMY, BDMPS–Z and ASW–MS

1. AMY transport equations

The medium-induced radiative energy loss su↵ered by
high energy partons passing through nuclear matter was
first computed in the BDMPS–Z approach [12, 34–37],
in which the gluon emission probability is expressed in
terms of the Green’s function of a 2-D Schrödinger equa-
tion with an imaginary potential proportional to the
interaction cross section with color centers of a quark-
antiquark-gluon system.

In the AMY approach [51, 52, 65, 66], the gluon emis-
sion rates are calculated fully at leading order in ↵s by
resumming an infinite number of ladder diagrams in the
context of hard thermal loop resummed QCD. Both ap-
proaches are valid in the multiple soft scattering limit,
but di↵er in several essential ways: in AMY the medium
consists of fully dynamic thermal quarks and gluons,
while in BDMPS–Z the medium is treated as a collec-
tion of static scattering centers. In BDMPS–Z the gluon
emission probability is calculated in configuration space
while in AMY the radiation rate is calculated in mo-
mentum space. Salgado and Wiedemann [39] further ex-
tended the BDMPS–Z formalism to include the correct
thin plasma limit, which has important quantitative ef-
fects. In addition, di↵erent evolution schemes are used
for multiple-gluon emission: the AMY formalism uses
rate equations to obtain the final parton distributions
while applications of the BDMPS–Z calculation convo-
lute the radiation rate with a Poisson distribution to ob-
tain the quenching weights.

The main assumption in these two formalisms is that
the temperature of the medium is high enough such that
the asymptotic freedom of QCD makes it possible to treat
the interactions between a fast parton and the medium

. . .
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FIG. 10: A typical diagram calculated in the AMY and
BDMPS–Z approaches.

using perturbation theory. In this case, soft exchanges
between the medium and the propagating parton domi-
nate the stimulated radiation of a hard collinear gluon.
At the same time, the e↵ect of multiple collisions is re-
duced due to the coherence between multiple soft scat-
terings within the formation time of the emitted gluon
(LPM e↵ect). This e↵ect makes it necessary to resum all
diagrams as depicted in Fig. 10 to calculate the leading
order gluon emission probability/rate.

In the AMY approach, one considers a hard parton
traversing an extended medium in thermal equilibrium
with asymptotically high temperature T ! 1. Due to
the small coupling g ! 0, a hierarchy of parametrically
separated scales T > gT > g2T makes it possible to con-
struct an e↵ective field theory of soft modes (modes with
momentum |k| ⇠ gT ) by summing contributions from
hard thermal loops into e↵ective propagators and vertices
[67, 68]. The hard parton traversing a thermal QGP un-
dergoes a series of soft elastic scatterings with transverse
momentum of order ⇠ gT o↵ the thermal particles of the
medium. The di↵erential cross section (interaction rate)
at leading order in ↵s is

d�̄el

d2q?
=

1

(2⇡)2
g2Tm2

D

q2
?(q2

? + m2
D)

. (16)

Note that the rate has been divided by the quadratic
color Casimir CR of the parent parton, indicated by plac-
ing a bar over the rate �el (similarly for other quantities).

These soft multiple scatterings induce collinear split-
ting of partons. The time scale over which the parton
and emitted gluon overlap is of order

p
!/q̂, which is

of greater or equal order of magnitude than the mean
free time of soft scatterings for ! � T , with ! the en-
ergy of the radiated gluon. To obtain the leading-order
gluon emission rates, one must consistently take into ac-
count the multiple scattering processes. Within the ther-
mal field theory, one essentially calculates the imaginary
parts of an infinite number of gluon self-energy ladder di-
agrams. The resummation of these ladder diagrams can
be organized into a Schwinger-Dyson type equation for
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This is what is going on:

µ

This gluon is soft and not collinear

E

T µ

E - bit



Radiative and Collisional Loss:

Collisional Energy Loss:
dpLO

coll

dt (µ)

µ

E E - bit

T

Features:

1. Plasma is excited: T � µ � E

2. Hard particle in hard particle out

Radiative Loss: dprad

dt (µ)

∆θ

E

T µ

(1 − x)E

xE

Features:

1. Plasma is excited: T � µ � E

2. Hard particle in, two hard part. out

- We require xE � µ

As the bremmed energy gets lower and lower, the angle ∆θ gets larger and larger



Radiative and Collisional Loss

µ

Soft Radiative Loss:
dpNLO

coll

dt (µ)

E

T µ

E - bit

Features:

1. Plasma is excited: T � µ � E

2. Hard particle in, one hard particle

out

This is higher order correction to the collisional E-loss rate

Collisional Energy Loss:
dpLO

coll

dt (µ)

µ

E E - bit

T

Final result is independent of µ:
dpLOcoll

dt
+
dpNLOcoll

dt︸ ︷︷ ︸
Phenomenological Coll E-loss

+
dprad

dt︸ ︷︷ ︸
Radiative Loss



My real motivations:

X Energy loss

2. The shear viscosity



My real motivation. Shear viscosity and the kinetics of weakly coupled QGP

1. Hard Collisions: 2↔ 2

Q~T

P ~ T

2. Diffusion: collisions with soft random classical field

P~T

~gT ~gT

CGLV [q⊥] =
Tg2m2

D

(q2
⊥ +m2

D)2
→ Probability of a tranverse kick q⊥



3. Brem: 1↔ 2

• random walk induces collinear bremsstrhalung

P+K

K

P
~gT

NLO involves corrections to these processes and the relation between them

But shear viscosity is too hard . . .



My real motivations:

X Energy loss

X The shear viscosity

Photon production at NLO is a good warm-up calculation.

Lets do it!



Hot QGP

K

2k(2π)3 dΓ

d3k
= Photon emission rate per phase-space

The photon emission rate at weak coupling:

• The rate is function of the coupling coupling constant and k/T :

2k(2π)3 dΓ

d3k
∝ e2T 2

[
O(g2 log) +O(g2)︸ ︷︷ ︸

LO AMY

+

O(g3 log) +O(g3)︸ ︷︷ ︸
From soft gT gluons, nB ' T

ω ' 1
g

+ . . .



Three rates for photon production at Leading Order Baier,Kapusta, AMY

1. Hard Collisions – a 2↔ 2 processes

K

Q~T
∼ e2 m2

∞︸︷︷︸
g2CFT

2/4

× nF (k)︸ ︷︷ ︸
fermi dist.

×
[

log (T/µ) + C2to2(k)
]

2. Collinear Bremsstrhalung – a 1↔ 2 processes

P+K
K

P
~gT

∼ e2m2
∞nF

[
Cbrem(k)︸ ︷︷ ︸

LPM + AMY and all that stuff!

]



3. Quark Conversions – 1↔ 1 processes (analogous to drag)

K K

~gT or

K

~gT

K

= ∼ e2m2
∞nF [log(µ⊥/m∞) + Ccnvrt]

Full LO Rate is independent of scale µ⊥:

2k
dΓ

d3k
∝ e2m2

∞nF

[
log (T/m∞) + C2to2(k) + Cbrem(k) + Ccnvrt(k)︸ ︷︷ ︸

≡ CLO(k)

]



O(g) Corrections to Hard Collisions, Brem, Conversions:

1. No corrections to Hard Collisions:

2. Corrections to Brem:

(a) Small angle brem. Corrections to AMY coll. kernel. (Caron-Huot)

Q = (q+, q−, q⊥) = (gT, g2T, gT )

θ ∼ g

CLO[q⊥] =
Tg2m2

D

q2
⊥(q2
⊥ +m2

D)
→ A complicated but analytic formula

(b) Larger angle brem. Include collisions with energy exchange, q− ∼ gT .

θ ∼ √
g

Q = (q+, q−, q⊥) = (gT, gT, gT )



3. Corrections to Conversions:

K K

or

K

~gT

K
• Doable because of HTL sum rules (light cone causality) Simon Caron-Huot

• Gives a numerically small and momentum indep. contribution to the NLO rate

Full results depend on all these corrections.

These rates smoothly match onto each other as the kinematics change.



NLO Results: ΓLO+NLO ∼ LO + g3 log(1/g) + g3

2k
d∆ΓNLO

d3k
∝ e2m2

∞nF (k)
[ conversions︷ ︸︸ ︷
δm2
∞

m2
∞

log

(√
2TmD

m∞

)
+

large-θ-brem︷ ︸︸ ︷
δm2
∞

m2
∞
Clarge−θ(k) +

small-θ-brem︷ ︸︸ ︷
g2CAT

mD
Csmall−θ(k)

]
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The different contributions at NLO (conversions are not numerically important)

large-θ radiation suppressed at NLO

small-θ radiation enhanced at NLO
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The calculation



Semi-collinear radiation – a new kinematic window

2 → 2 processes

semi-collinear radiation

collinear radiation

The semi-collinear regime interpolates between brem and collisions



Matching collisions to brem

• When the gluon is hard the 2↔ 2 collision:

is physically distinct from the wide angle brem



Matching collisions to brem

• When the gluon becomes soft (a plasmon), the 2↔ 2 collision:

θ ∼ √
g

is not physically distinct from the wide angle brem

θ ∼ √
g

q− ∼ gT

Need both processes

– For harder gluons, q− → T , this becomes a normal 2→ 2 process.

– For softer gluons, q− → g2T , this smoothly matches onto AMY.



Matching collisions to brem

• When the gluon becomes soft (a plasmon), the 2↔ 2 collision:

E ∼ T

√
s ∼ √

2TmD
θ ∼

√
s

E ∼ √
g

Q ∼ mD

is not physically distinct from the wide angle brem

θ ∼ √
g

q− ∼ gT

Need both processes

– For harder gluons, q− → T , this becomes a normal 2→ 2 process.

– For softer gluons, q− → g2T , this smoothly matches onto AMY.



θ ∼ √
g

δE = q− = P−
out − P−

in ∼ gT

• The AMY collision kernel C[q⊥] involves Aurenche, Gelis, Zakarat

q2
⊥C[q⊥] =

∫ ∞

−∞

dq+

2π
〈Fi+Fi+(Q)〉|q−=0 =

Tm2
D

q2
T +m2

D︸ ︷︷ ︸
Probability of a transverse kick q⊥

• We need a finite q− = δE generalization:
∫ ∞

−∞

dq+

2π
〈Fi+Fi+(Q)〉|q−=δE = T

[
2(δE)2(δE2 + q2

⊥ +m2
D) +m2

Dq
2
⊥

(δE2 + q2
⊥ +m2

D)(δE2 + q2
⊥)

]

︸ ︷︷ ︸
Probability of a transverse kick q⊥ and energy transfer δE

Wider angle emissions can be included by a “simple” modified collision kernel



Matching between brem and conversions

semi-collinear radiation

collinear radiation

2 → 2 processes

What happens when the

final quark is soft?

When the quark becomes soft need to worry about conversions.



Matching between brem and conversions

• When the final quark line is hard, the brem process :

is physically distinct from the conversion process:



Matching between brem and conversions

• When the final quark line becomes soft, the brem process :

P K ≃ P

µ < zP

is not physically distinct from the conversion process

P K ≃ P

zP < µ

Separately both processes depend on the separation scale, µ ∼ gT , but . . .

the µ dep. cancels when both rates are included

• The LO small-θ and large-θ brem rates depend linearly and logarithmically on an

infrared separation scale, µ.

The NLO conversion rate will depend on a UV cutoff µ and cancels this dependence



Brem rates with a soft quark

P K ≃ P

µ < zP

• Small angle brem

2k
dΓ

d3k

∣∣∣∣
zP>µ

= Finite − linear IR dependence µ

• Wide angle brem

2k
dΓ

d3k

∣∣∣∣
zP>µ

∝ Log IR dependence on µ + Finite

The conversion rate should cancel this dependence on µ



Matching between brem and conversions

semi-collinear radiation

collinear radiation

2 → 2 processes

What happens when the

final quark is soft?

When the quark becomes soft need to worry about conversions.



Computing the conversion rate with sum-rules (LO): (see also Bodeker)

K K

~gT
2k(2π)3 dΓcnvrt

d3k
∝ e2nF (k) q̂cnvrt(µ)

• q̂cnvrt is the quark version of q̂

q̂cnvrt(µ⊥) =

∫ ∼µ d2pT
(2π)2

∫ µ

−µ

dpz

2π
Tr
[
γ+S

<(ω,p)
]
ω=pz︸ ︷︷ ︸

unintegrated soft quark parton-dist fcn of QGP

=

∫ µ d2pT
(2π)2

m2
∞

p2
T +m2

∞

where

SR(X) =
〈
ψ(X)eig

∫X
0 dxµAµψ̄(0)

〉



Computing the conversion rate at NLO with sum-rules:

K K

2k(2π)3 dΓcnvrt

d3k
∝ e2 nF (k) q̂cnvrt(µ)

• At NLO we have only to replace m2
∞ → m2

∞ + δm2
∞

q̂cnvrt =

∫ µ d2p⊥
(2π)2

m2
∞ + δm2

∞
p2
T +m2

∞ + δm2
∞︸ ︷︷ ︸

finite + UV logarithmic divergence in µ

+ #g2µ

︸ ︷︷ ︸
linear UV divergence in µ

The UV divergences of conversion rate match with the IR divergences of large and

small angle brem giving a finite answer



Conclusion

• The result again
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• All of the soft sector buried into a few coefficients, C[q⊥, δE] and q̂cnvrt

– Can we compute these non-perturbatively ?

– Can constrain experimentally with medium-energy jets E ' 30÷ 50 Gev.

Many things can be computed next (e.g. shear viscosity and e-loss)




